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TECHNICAL NOTE

Pressuremeter interpretation by

progressive relaxation

By | LUKER*

Introduction

A need exists in geotechnical engineering for a model of soil stress-
strain behaviour thatis simple in concept and that has easily obtainable
parameters. Because of this need, the linear isotropic elastic model,
with just two constants, is widely used in practice. A significant

improvement in performance over that model, while remaining simple :

in concept, is offered by one that allows for variable moduli.

This paper presents an easily applied method of obtaining the
parameters for a model in which the bulk and shear moduli of the soil
depend upon the current stress-strain states.

Method

The soil around the pressuremeter is assumed to be divided into
annular rings of uniform thickness, the interfaces between which are
numbered as shown in Fig 1. (The thickness and number of these rings
are discussed later.) Initially, only one ring of soil is considered to exist
round the pressuremeter and the first stage of radial stress o, is applied
to the inside of the ring at radius ry. The movement at the outside of the
soil ring is prescribed to be zero and, using Lamé’s” theory, the radial
expansion of the pressurementer (6r at radius 1) is calculated. The
choice of the elasticity parameters used is described below under
‘Material model'.

The calculation of 8r at ry, using Lamé’s theory, is carried out in two
stages. First the induced radial stress at r, (that is o, r,) is found for the
applied radial stress at ry and with the condition that Sr, = 0. Second,
for the inner and outer radial stresses, o, and o, r,, the radial move-
ment at the pressuremeter, 8r,, is calculated (Note the algebraic
derivations of these relatlonshlps are not complex, but are too
voluminous to be included in this technical note. If interested readers
contact the author, a copy will be provided.)

A second annular ring is then added and calculations as previously
described are applied to both rings, starting with the outside one, in the
following manner (use Fig 1 as a guide when reading the next
paragraph).

The radial stress at r, (calculated when or, was assumed to be zero)
is now the applied radial stress on the ring between r, and ry, and the
induced radial stress at r5 is calculated for br, prescribed to be 0. For
oy, , and o, ., &r, is then found. This value of Sr, is now the pres-
cribed movement at rp, used to calculate a new value of o, induced
by g, .. the increment of stress applied by the pressuremeter.

Finally, &r, is calculated using o, r, and the most recently calculated
value of o, ,,.

In the procedure described for two rings, it can be seen that Sr, is
now free to move, whereas with just onering, ro was at the outside of the
soil annulus around the pressuremeter and therefore &r, was pres-
cribed to be zero. The relaxation of br, reduces o, r,and hence allows
&r, 1o increase. This progressive relaxation of the body of soil round
the pressuremeter continues with the inclusion of further annual rings
atthe outside. Fig 2 shows the effect on the calculated expansion of the
pressuremeter of increasing the number of annular rings of thickness
(pressuremeter diameter/8).

The addition of further rings of soil can be stopped when the effect on
&r, becomes negligible. In the case of the exam ple shown in Fig 2, this
was at a radius of 2,5 times the pressuremeter diameter. Hence the
number of annular rings of soil is chosen automatically. Because each
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ring has its own values of elastic moduli, the thickness of the rings will
influence the calculated value of &r, . However, this influence is not
great and a thickness of pressuremeter diameter/8 is a good com-
promise between accuracy and speed of calculations.

Material model

The material model considers separately the behaviour of the soil
under the hydrostatic and shear components of the stress state acting
on it.
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ry, farp = Identification numbers of the interfaces between annular rings
Ty, Iy = Total radial stress at interface ry, e at the pressuremeter
Efr,, = Radial movement of interface number rn

Fig 1: Division of soil around pressuremeter into annular rings
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Soil behaviour under hydrostatic stress

For the expansion of a cylinder in an isotropic, linear elastic material,
thereis no netchangein the mean direct stress (ie the hydrostatic com-
ponent of the stress state). However, because the soil behaviour is not
linear, there will be a net increase in compressive stress on the soil
around the pressuremeter. It is assumed that the behaviour under hyd-
rostatic stress is that given by the results of a laboratory test on an
undisturbed sample of the soil. Domaschuk and Wade? suggested that
the following function can be used to represent that behaviour:

o = agb ; (1)
where
Om = hydrostatic stress
= (G1+Gg+0‘3)/3
&, = volumetric strain

a and B = constants found by plotting the test resuits on axes of log
o, against log g,

A typical test result and the Eqn 1 functions to represent it are
shown in Fig 3.

In the calculation of radial stresses and movements that pertain at
the end of a stage of load application by the pressuremeter, the secant
bulk modulus, K., is needed. An expression for K, is derived as
follows:

a
Ksee = -z
&y
o 1/p
But fromEqn1g, = ( Y )
a
Substituting for &, gives Ky, = o'’ o,/""? @)

Soil behaviour under shear stress

It has been found by Kondner and Zelasko® and Duncan and
Chang?® that a hyperbolic relationship successfully models shear
behaviour. This relationship is of the form:

T o= ! (3)
I S
Ginit Tasymp

where ¥

tandy =the corresponding shear stress and strain on any

plane
Ginit = initial s. .ar modulus at very low strains
Tasymp = asymptotic stress limit of shear stress t that the hyper-

bolic Eqn 3 approaches.

These parameters are illustrated in Fig 4. The value of the secant
shear modulus is then given by:

1
ST T (4)
1+‘( :

Ginit Tasymp

G sec

= |
1

It is convenient, for simplicity of expressions, to use the plane on
which maximum shear stress and strain occur (assumed coincident) to
calculate the value of y for use in Eqn 4.

The two parameters Gy,;, which is a measure of shear stiffness, and
Tasympr Which is a measure of strength, are required to be found. Both
could be found from the pressuremeter test, but because different
drainage conditions will exist in the actual design situation, where
movements need to be predicted, the shear strength parameters used
then in the soil model will need to be appropriate for that situation. For
this reason itis proposed that ¢ and ¢ from laboratory shear tests with
drainage similar to the pressuremeter test be used to interpret it. The
same type of laboratory test would then be used to give ¢ and ¢ for the
drainage conditions of the design situation.

Therelationship between Tasymp (i€ Maximum shear stress on Mohr’s
circle) and ¢, ¢ is illustrated in Fig 4 and is given by:

sin ¢ ' (5)

G, + G
Tasymp = C COS ¢ + (—'-5-—-0)

This leaves G;,; as the only unknown parameter from the soil model
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to be found from interpretation of the pressuremeter test. Its value is
found by varying it in a process of trial and error, until the pres-
suremeter results graph of radial stress against radial expansion has
been reduced by the Oy against 5’r1 graph from the calculations de-
scribed above.

Example of application
Fig 5 is the graph of probe pressure (corrected for membrane stiff-
ness) against radial expansion of a ‘Camkometer’ self-boring pres-
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Fig 3: Results of an isotropic consolidation test on a sample of Gault clay, for
various percentages of complete consolidation
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Fig 4: Graphical representation of the soil behaviour in shear assumed in
the model
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Fig 5: Pressuremeter test result in Gault clay, compared with calculated
simulation for varying G,
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suremeter in a stiff clay (the Gault clay in eastern England). To
interpretit, itisfirstnecessary to choose the appropriate degree of con-
solidation curve from the isotropic consolidation test results shown in
Fig 3, which are from a test done on a sample from the same site and
depth. The assessment of the degree of consolidation taking place dur-
ing a pressuremeter test is very difficuit. A simplified approach has
been adopted as follows:

1. Assume that an instantaneous rise in radial stress at the pres-
suremeter of 100 units is carried entirely by a rise in pore pressure
and the radial distribution of the pore pressure is as given by linear
elasticity theory (ie Lamé’s theory).

2. Using the finite difference solution for radial flow consolidation and
assuming free drainage boundaries at the pressuremeter and at
four diameters away from the pressuremeter, calculate the dissipa-
tion in pore pressure at radial intervals between those boundaries
over the period of time that the test was done.

3. Because more of the measured radial movement of the pres-
suremeter is caused by the consolidation of the soil close to it than
of that further away, a weighted average is found for the degrees of
consolidation calculated in stage 2. The method of weighting is
according to the elastic distribution of radial stress.

From such a weighted assessment, the appropriate degree of con-
solidation for the test in this example is 20 per cent, hence the 20 per
cent points on Fig 3 were used to get a and f for the bulk modulus func-
tion, Egn 2. Next it is necessary to choose values of shear strength
parameters ¢ and ¢ that are appropriate to a 20 per cent dissipation of
the change in pore pressure that is induced in a triaxial shear test.
Again this is very difficult, but from available test information on the
Gault clay, values of ¢ = 130 kN/m? and ¢ = 0 were estimated.

The calculated simulation of the pressuremeter testis shown on Fig 5
for three values of G,,;. In a practical situation where soil movements
are to be predicted, the majority of the soil will be well below failure, say
in arange of stress up to about 350 kN/m?on Fig 5. For this range, Gjn;
= 60 MN/m?2gives as good a fitas would be needed in practice. The soil

model would then be used (probably with the finite element method)
with this value of G;,; and the values of a, §, ¢ and ¢ appropriate to the
drainage conditions that will exist in the design situation where
movements are to be predicted.

For the five increments of stress shown in Fig 5, a calculation of the
corresponding radial expansions took just two minutes with compiled
BASIC on an IBM PC. With this degree of speed and operational con-
venience, itis quite easy to examine the sensitivity of the pressuremeter
test to variations in the other parameters in the soil model as well
as Ginit-

Conclusions

1. The progressive relaxation method of pressuremeter interpretation
can be applied with a variable moduli model of soil behaviour.

2. By the inclusion of laboratory test results in the soil model and by
trial and error choice of the initial shear stiffness modulus, the pres-
suremeter test result can be closely reproduced.

3. The sensitivity of the reproduction of the pressuremeter test result
to variation in the parameters that define the soil’'s behaviour can be
calculated easily and quickly.

4. Having found the parameters for the soil model that enable the pres-
suremeter test to be reproduced, parameters for the drainage
conditions thatapply to the design situation can then be substituted
in the model.
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But in the end it boiled down to an

hese days the old van Stadens River
Bridge seems a little modest compared
to the spectacular concrete arch above it.
But make no mistake. It's as stoic
today as it was over fifty years ago.
Solidly built with PPC cement, it's
stood up to virtually anything man or
nature could dish out. Including the floods
of 1968.
So it's not surprising that when it
was decided to build the new bridge, PPC

once again supplied the cement.

The contractors knew they were
dealing with people who maintain the high-
est standards of quality — because day in
and day out, PPGC put their product through
the most rigorous checks.

They were also aware of the past. Of
the fact that PPC had supplied the cement
for projects as diverse as the Union Build-
ings in 1910 and the famous Table Mountain
Cablecar Station in 1924,

approach as old as business itself: If you
want success 10 breed success, start with
the right materials.

Pretoria Portland Cement. Incorporating PPC Lime.
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