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ABSTRACT

CP 2012 is used extensively throughout thé world to design machine foundations
for vibrations. The code, however, does not give practical advice on how to design
a foundation with piles. CP 2012 models the soil as a system of undamped individ-
ual springs. A pile group may similarly be modelled as a system of springs, deter-
mined from the geometric and material characteristics -of the piles. The stiffness of
a pile group is expressed in the same form as sub=grade reactions, permitting the
use of the same dynamic equations given in CP 2012; thus, the code may be used
for both cases—soil and piles The derivation of the equations are given and com-
pared to a simple finite element model.
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1 INTRODUCTION

Designing foundations with piles for vibrating machinery is a difficult task for the
simple reason that practical design methods are not readily available or published
in codes of practice [1, 2]. A dearth of information on the subject has caused some
designers to resort to commercial computer programmes, such as PIGLET [3] and
REPUTE [4], which are capable of analyzing pile groups.

CP 2012, the Code of Practice for Foundations for Machinery [2], is widely used in
many parts of the world. The code provides explicit instructions on how to determine
natural frequencies and amplitudes of vibration based on the assumption that the
foundation can be modelled as a system of undamped individual springs [2, 5, 6].
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The foundation block is assumed rigid and the spring stiffnesses are derived from
the properties of the soil. The code makes reference to Barkan’s [7] method to de-
termine the soil stiffnesses (referred to as subgrade reactions). Since the majority of
foundations supporting vibrating machinery are founded on soil, the code is applica-
ble to most cases. However, when designing a foundation with piles, the method of
design is not explicitly given by the code. Therefore, the objective is to present a
simple method to determine the stiffnesses of a pile group which may be used in
conjunction with CP 2012. The proposed method is similar to the design of a founda-
tion block on soil. As mentioned, CP 2012 models the soil as a system of undamped
individual springs. A pile group is similarly modelled as a system of springs [1, 8].

2 PILING ASSUMPTIONS

Sources of resistance to piling forces are shaft friction and end bearing. Vibrations,
however, may diminish the frictional resistance along the shaft, particularly in coarse
soils. Furthermore, the imposition of lateral forces on the shaft may compact the
surrounding soil, resulting in further diminishing the frictional resistance. For these
reasons, the frictional resistance along the shaft should be ignored in piles subjected
to vibrations. Only where shear and moment fixities of the toe of the pile are consid-
ered is stress from the soil on the shaft may be taken into account. In general, piles
applied to vibrating foundations should be “end bearing type” and the shaft assumed
to be free. Longitudinal settlement of the toe of the pile should be negligibly small.
To achieve this, the pile should preferably be founded on rock or sufficiently far into
dense or stiff stratum so that an “effective length” of the pile may be estimated. This
is the equivalent free length of a pile on a rigid base, such that its longitudinal
stiffness is the same as that of the actual pile. Shear and moment fixities of the toe of
the pile are achieved by sufficient embedment of the toe into a stiff and strong stra-
tum. If a pinned toe connection is assumed, only shear fixity is required. Although
forces developed from shear across the base is usually small, sufficient shear resis-
tance can be developed from penetration of the pile by 1.5 diameters into a stratum
classified as “rock”. Moment fixity resistance should only be assumed if powerful
drilling equipment has enabled sufficient penetration into a stiff and strong stratum.
Specialist geotechnical investigation and assessment of such a situation will be needed.

3 PILE GROUP STIFFNESS EXPRESSED AS A SUBGRADE REACTION

The soil stiffness is referred to as the subgrade reaction. The value of stiffness, in
units of stress per unit deflection, is called the coefficient of subgrade reaction.
Four coefficients are used—the coefficient of uniform compression (cu), the coeffi-
cient of non-uniform compression (Cy), the coefficient of uniform shear (c,) and the
coefficient of non-uniform shear (c,). These coefficients are defined in tefms of the
pile group stiffnesses, but expressed in the same form as coefficients of subgrade
reaction, as described in the following sections 5.1 to 5.4,
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3.1 Coefficient of uniform compression

The coefficient of uniform compression is determined from the spring system
illustrated in Fig. 1. The foundation block is assumed rigid and the springs sche-
matically represent the elastic properties of the piles.
As a vertical load (R) is applied to the foundation block, a uniform deformation of
A will occur in the piles. A pile configuration, where the centre of stiffness coin-
cides with the centre of mass of the machine and foundation, is a necessary prereq-
uisite to ensure a uniform deformation. The vertical stiffness of the piles (&), is
simply the load divided by the deformation.

E,=R/A (1)
Since piles may be vertical or raked, the calculation of stiffness must consider both
cases, as illustrated in Fig. 2. As depicted, the total deformation of the pile may be
broken down into two fundamental deformations—axial and shear. The axial defor-
mation is represented by the symbol A, and the shear deformation (side sway) is repre-
sented by A,. Each of these deformations is associated with reactions R, (axial) and R,
(shear). The stiffness of the pile depends on the moment fixity of the bearing end.

Foundati on Block }_
A

Piling modell ed
as springs

Fig. 1: Foundation spring system for vertical deformations

Raked pile deformed
vertically

Fig. 2: Vertical deformations of a raked pile
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3.2 Coefficient of uniform compression for a bearing end with moment fixity
The stiffness equation for axial deformation is given in equation 2

EA
R, = (—]Ag )
‘ L
Since,
A, =Acosa
3
R, —[E—;JAcosa @)

where E is Young’s modulus of the pile, A is the cross-sectional area of the pile, L
is the length of the pile and a is the angle of rake.
Similarly for shear, the stiffness is given by equation 4.

12E1
R, =(Z2Ea, @
Since,
A, =Asina
Ry (Hfjjf_\sina ®)
L

As shown in Fig. 2, R, and R, are components of R
R=R, cosa+ R sina

Substituting equations 3 and 5,

R= (ﬁ)/_\ cos’ a+ [ﬂ)/ﬁ sin? &
L L

Rearranged,

= KE—;) cos’ a + ( 12;"1} sin® a}A =k,A (6)

The vertical stiffness is the quantity in brackets. The total stiffness is the sum of the
stiffnesses of each pile

k, = i{('g—;} cos’ a + (1%?] sin® a} (7

where #» is the number of piles. The pile group vertical stiffness is expressed in the
same form as the subgrade reaction

o sl ®)

where 4, is the cross-sectional area of the pile group.
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3.3 Coefficient of uniform compression for a pinned bearing end
The derivation for the case of a pinned bearing end is similar to the fixed case. The

difference is the term of the equation which represents the shear stiffness. The
stiffness equation for a pinned bearing end is given in equation 9:

R= H%} cos” o + [%{} sin’ a}A =k,A (9)k

The stiffness of the pile group is the sum of the stiffnesses of each pile.

k, = i[(%)cosz a +[%}st cx} (10)

Eq. 10 is converted into an equivalent subgrade reaction by equation 8.

3.4 Coefficient of non-uniform compression

The coefficient of non-uniform compression is determined for problems where a
non-uniform pressure is applied to the soil. Rocking and pitching moments will
cause non-uniform pressures. The foundation block spring system, subjected to a
moment, is illustrated in Figure 3. As before, the springs represent the elastic
stiffnesses of the piles.

3.5 Coefficient of non-uniform compression for fixed and pinned bearing end

If a rocking or pitching moment (M) is applied, the foundation block will undergo a
rotation ($). The moment will produce a vertical deflection A and a reaction R in
each pile. The moment contribution of a single pile is‘given in equation 11.

M, =RI (11)
where / is the distance from the moment axis to the location of the pile.
Since the pile will undergo a vertical deformation, the reactive force is equal to
equation 6 or 9, depending on the end condition of the piles. Substituting equations
6 or9into 11,

M, = kAl
For small angles of rotation,

A=g¢l (12)

Fig. 3: Foundation spring system for rocking or pitching deformations
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The rotational stiffness is therefore,

ky = kI 2
The total moment (M) is equal to the sum of equation 12 for each pile.
M=3(kP) $ (13)
1

The rotation ¢ is a constant and therefore pulled out of the summation. From Bar-
kan (Barkan DBF1962) [7], the moment is also expressed in terms of the subgrade
reaction and the moment of inertia (7,) of the pile group.

M=c, ¢ (14)

Equating equations 13 and 14, the coefficient of non-uniform compression is solved

> (k7)
o1 (15)
(] I,
The values / and /, may change in the x and y directions. For this reason, equations

16 and 17 are defined accordingly

2 (ki)

=T (16)
(s |
p == | (17)

Py
From equation 14, the rotational stiffness is determined.

ky=c4l, (18)
Substituting equations 16 and 17 into 18, the x and y stiffness’ for non-uniform
compression is solved

kg = i(kvzf) (19)

3.6 Coefficient of uniform shear

The coefficient of uniform shear is derived from the interaction of the horizontal
forces on the soil. The foundation block spring system is illustrated in Figure 4. As
shown, the springs are placed horizontally to represent the shear stiffness of the soil.
A raked pile is assumed to be deformed in the horizontal direction as shown in Figure
5. Similar to the case of uniform compression, the total deformation is broken down
into two fundamental deformations—axial and shear (side sway). The axial defor-
mation is represented by the symbol A, and the shear deformation is represented by
A,. These deformations are associated with reactions R, (axial) and R; (shear).
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A

R
= Sk

1
1 1
: 7 ._\AA/\_
1 Foundation block |

Fig. 4: Foundation spring system for horizontal deformations

Fig. 5. Horizontal deformations of a raked pile

3.7 Coefficient of uniform shear for fixed bearing end
The stiffness equation for axial deformation is given by equation 20

7, =(2Z)a, : 20)
L

Since,

A, =Asina R, = [%E}Asina (21)
The stiffness for the shear (side sway) is given by equation 22
Since,

12
A, =Acosc R = (%JACOS&' (23)

The reactions R, and R, are components of R
R=R sina+ R cosx
Substituting equations 21 and 23

R= [if-) Asin® o + (%i) Acos’ o (24)
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Rearranged,

R= [(%) sin® @ + ( liflj cos’ a}A =k,A (25)

The horizontal stiffness (k) is the quantity in brackets. The total stiffness is the
‘sum of the stiffnesses of each pile

E = i [(fi—EJ sin® o + [12;?]] cos’ a} (26)
1

The horizontal stiffness of the pile group is expressed in the same form as the
subgrade reaction

¢, =—r | @7)

If the piles are raked, the horizontal shear stiffness may differ in the x and y direc-
tions, depending on the direction of rake. For this reason, the horizontal stiffnesses
are determined in the x and y directions (k. and k).

In the direction of rake, the pile stiffness is based on the axial and side sway de-
formations of the pile. If the pile is not raked, the stiffness equation will only
include side sway. To account for this, the rake angle a is replaced by a cos™p to
determine the horizontal stiffness in the x direction and o is replaced by a sin’ to
determine the horizontal stiffness in the y direction. The angle B is the angle in plan
of a raked pile, as shown in Figure 6. The horizontal stiffnesses in the x and y
directions are given in equations 28 and 29.

k, = Zn: {[A—fj sin®(arcos® ) + [ 12;?) cos’ (e cos’ ﬂ)} (28)
1
ky, = i[(A—fJ sin’(arsin® ) +(1;:‘L#j cos® (e sin® ﬂ)} (29)
Hl"—ﬂ ,e(;}

Reked pil -
y o pi e—v-__;' =
-

-
-

L

Foundation

4
T
1
1
1
block 1

|

Fig. 6: Angle orientation of raked piles in plan
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Furthermore, the coefficients of subgrade reactions are defined in the x and y
directions

¢, = (0)
Ap

g, =

YA
’ G1)

3.8 Coefficient of uniform shear for pinned bearing end

The derivation of the coefficient of uniform shear for a pinned bearing end is
similar to the derivation of the fixed bearing end case. The difference is the hori-
zontal shear stiffness term

b= i[[—iﬁj sin? (acos? B) + [%] cos? (e cos’ ﬁ)} (32)
Jeyy = Z::[(A—fjsinz (asin® B) + [i;i)cosz(a sin® ﬂ)} (33)

The equivalent coefficient of subgrade reaction is determined by substituting
equations 32 and 33 into equations 30 and 31.

3.9 Coefficient of non-uniform shear for fixed and pinned bearing end

The coefficient of non-uniform shear represents the stiffness of the soil determined
from the twisting (or drilling or yawing) action of the foundation base. The applied
moment is referred to as the yawing moment. The foundation block spring system
is iltustrated in Figure 7. From the figure, the radius (/) is the distance from the
axis of the yawing moment to the location of the pile. The direction of deformation
(A) and the calculated stiffness is orientated at right angles to the radius. The
deformation is a function of the shear reaction (R;) and the angle of twist (v).

Fig. 7: Foundation spring system of twisting deformations
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The moment contribution of a single pile is equal to the horizontal shear reaction
times the radial moment arm (/,).

M, =R
The horizontal reaction is equal to equation 25, at right angles to the radius
M; = kyoAl

Where kj is the horizontal stiffness at an angle & (at right angles to the radius).
For a small angle of twist,

A=Ly M; =0 kv (34)
The total yawing moment is equal to the sum of M; for each pile.
M= (Pk,) v 35)
1

From Barkan’, the twisting moment is related to the polar moment of inertia (/) and
the subgrade reaction ¢, .

M=cJy (36)

Where J is the polar moment of inertia of the pile group. Equating equations 36 and
37, the coefficient of non-uniform shear is determined.

i (szw)

c,=—1——— 37
; 7 ‘ (37
From equation 37, the twisting stiffness is determined

k,=cJ (38)
Combining equations 38 and 39,

k, = 2(17k) (39)

1

The horizontal stiffness ( k,, ) is the stiffness at right angles to the radius (/,)

kyp = Ky, sin® 6+ k,, cos® 6 (40)

4 VALIDATION OF STIFFNESS EQUATIONS

A simple pile configuration, supporting a vibrating foundation, is illustrated in Fig.
8. The four piles are raked (1:5), the effective length 2.65 metres long (2.7 m along
the rake) and assumed fixed at both ends. The pile is end bearing, cast into an
underlying rock stratum and assumed fully fixed at the pile tip. The piles are raked
in one direction along the x-axis. Other parameters, defining the properties of the
piles are given below:



Luker, C. Morris

shear reaction

radius

he radius).

(34)

(35)
“inertia (J) and

(36)

[uations 36 and

(37)

(38)

(39)

dius (7))
(40)

istrated in Fig.
g (2.7 m along
g, cast into an
piles are raked
operties of the

The adoption of CP2012 to design vibrating foundations with piles 397

_ i
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| 4000

Fig. 8: Pile configuration of a foundation block

Pile diameter = 600 mm
Jfou=30 MPa

E (dynamic) = 38 GPa
I=6.36 x 10° m* (single pile)
Tppim L4585 m" (pile group)
A=2.83 x 10" m? (single pile)
A=1.13 m” (pile group)
J=1.27 x 10% m® (pile group)

Table 1: Comparison of stiffness equations

Pile Stiffness Stiffness equations Finite Element Solution
(4 pile grouping) (i.e., Eqns 7, 16, 17, 26, : (N/m)
27 and 36)
(N/m)

k 183=10™ 1.54x 10"

kg 6.12 x 10%° 6.32x 10"

k, 6.12x 10 6.32 x 10'°

k., 1.18 x 10° 1.18x 10°

k,, 5.89x 10° 5.88x 10°

k, 7.07 x 10° 7.05x 10"

The proposed stiffness equations are compared to a finite element solution. The
model uses beam elements to represent the piles and shell elements (with an exag-
gerated E to make the block rigid) to model the block foundation. The stiffnesses
of the pile group are determined by applying arbitrary forces to the finite element
configuration and solving for the deformations (or rotations). The stiffnesses are
calculated by dividing the force by the deformation or by dividing the moment by
the rotation. The results are compared with the proposed theory and compiled in
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Table 1. Since the derivation of the theory is based on “first principles,” the equa-
tions are nearly identical to the finite element model.

5 CONCLUSIONS

The proposed equations are a simplified method to model piling in a form that is
adaptable to CP 2012. The theory, however, dictates that the pile must be end
bearing, unrestrained along the shaft and fixed or pinned at the bearing end. Al-
though many pile types rely on skin friction, piles subjected to vibrations poten-
tially lose the frictional bond between the soil and the shaft. For this reason, an
unrestrained shaft is assumed [1]. Table 1 indicates that the proposed equations
(which are derived from first principles) compare well with a finite element solu-
tion and therefore gives credence to the theory.
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